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Unit-1 

Verilog as HDL 

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested 

and a verified design description for the target FPGA or ASIC.  

The language has a dual function – one fulfilling the need for a design description and the other 

fulfilling the need for verifying the design for functionality and timing constraints like 

propagation delay, critical path delay, slack, setup, and hold times. 

Levels of Design Description 

The components of the target design can be described at different levels with the help of the 

constructs in Verilog. 

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels 

of abstraction in verilog.  

They are: 1. Circuit Level 2. Gate Level 3. Data Flow Level 4. Behavioral Level 

Circuit Level 

At the circuit level, a switch is the basic element with which digital circuits are built. Switches 

can be combined to form inverters and other gates at the next higher level of abstraction. 

Verilog has the basic MOS switches built into its constructs, which can be used to build basic 

circuits like inverters, basic logic gates, simple 1-bit dynamic and static memories. They can be 

used to build up larger designs to simulate at the circuit level, to design performance critical 

circuits.  

The below Figure1 shows the circuit of an inverter suitable for description with the switch level 

constructs of Verilog. 

 

Figure 1 CMOS inverter 



Gate Level 

At the next higher level of abstraction, design is carried out in terms of basic gates. All the basic 

gates are available as ready modules called “Primitives.” Each such primitive is defined in terms 

of its inputs and outputs. Primitives can be incorporated into design descriptions directly. Just 

as full physical hardware can be built using gates, the primitives can be used repeatedly and 

judiciously to build larger systems.  

Figure 2 shows an AND gate suitable for description using the gate primitive of Verilog.  

 

The gate level modeling or structural modeling as it is sometimes called is akin to building a 

digital circuit on a bread board, or on a PCB. One should know the structure of the design to 

build the model here. One can also build hierarchical circuits at this level. However, beyond 20 

to 30 of such gate primitives in a circuit, the design description becomes unwieldy; testing and 

debugging become laborious. 

Data Flow 

Data flow is the next higher level of abstraction. All possible operations on signals and variables 

are represented here in terms of assignments. All logic and algebraic operations are 

accommodated. The assignments define the continuous functioning of the concerned block. At 

the data flow level, signals are assigned through the data manipulating equations. All such 

assignments are concurrent in nature. The design descriptions are more compact than those at 

the gate level.  

Figure 3 shows an A-O-I relationship suitable for description with the Verilog constructs at the 

data flow level. 

 

 



 

Behavioral Level 

Behavioral level constitutes the highest level of design description; it is essentially at the system 

level itself. With the assignment possibilities, looping constructs and conditional branching 

possible, the design description essentially looks like a “C” program. 

 A module can be implemented in terms of the design algorithm. The designer no need to have 

any knowledge of hardware implementation. 

The statements involved are “dense” in function. Compactness and the comprehensive nature 

of the design description make the development process fast and efficient. 

 Figure 4 shows an A-O-I gate expressed in pseudo code suitable for description with the 

behavioral level constructs of Verilog. 

 

The Overall Design Structure in Verilog 

The possibilities of design description statements and assignments at different levels 

necessitate their accommodation in a mixed mode. In fact the design statements coexisting in a 

seamless manner within a design module is a significant characteristic of Verilog. Thus Verilog 

facilitates the mixing of the above-mentioned levels of design. A design built at data flow level 

can be instantiated to form a structural mode design. Data flow assignments can be 

incorporated in designs which are basically at behavioral level. 

 

 

 

 

 

 



Concurrency 

In an electronic circuit all the units are to be active and functioning concurrently. The voltages 

and currents in the different elements in the circuit can change simultaneously. In turn the logic 

levels too can change. Simulation of such a circuit in an HDL calls for concurrency of operation.  

A number of activities – may be spread over different modules – are to be run concurrently 

here. Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the 

normal languages like C where execution is sequential.)  

Concurrency is achieved by proceeding with simulation in equal time steps. The time step is 

kept small enough to be negligible compared with the propagation delay values. All the 

activities scheduled at one time step are completed and then the simulator advances to the 

next time step and so on. The time step values refer to simulation time and not real time. One 

can redefine timescales to suit technology as and when necessary and carry out test runs.  

In some cases the circuit itself may demand sequential operation as with data transfer and 

memory-based operations. Only in such cases sequential operation is ensured by the 

appropriate usage of sequential constructs from Verilog HDL. 

Simulation and Synthesis 

The design that is specified and entered as described earlier is simulated for functionality and 

fully debugged. Translation of the debugged design into the corresponding hardware circuit 

(using an FPGA or an ASIC) is called “synthesis.”  

The tools available for synthesis relate more easily with the gate level and data flow level 

modules [Smith MJ]. The circuits realized from them are essentially direct translations of 

functions into circuit elements. 

 In contrast many of the behavioral level constructs are not directly synthesizable; even if 

synthesized they are likely to yield relatively redundant or wrong hardware. The way out is to 

take the behavioral level modules and redo each of them at lower levels. The process is carried 

out successively with each of the behavioral level modules until practically the full design is 

available as a pack of modules at gate and data flow levels (more commonly called the “RTL 

level”). 

 

 

 



Functional Verification 

Testing is an essential ingredient of the VLSI design process as with any hardware circuit. It has 

two dimensions to it – functional tests and timing tests. Both can be carried out with Verilog. 

Often testing or functional verification is carried out by setting up a “test bench” for the design. 

The test bench will have the design instantiated in it; it will generate necessary test signals and 

apply them to the instantiated design. The outputs from the design are brought back to the test 

bench for further analysis. The input signal combinations, waveforms and sequences required 

for testing are all to be decided in advance and the test bench configured based on the same. 

The test benches are mostly done at the behavioral level. The constructs there are flexible 

enough to allow all types of test signals to be generated.  

In the process of testing a module, one may have to access variables buried inside other 

modules instantiated within the master module. Such variables can be accessed through 

suitable hierarchical addressing. 

Test Inputs for Test Benches 

Any digital system has to carry out a number of activities in a defined manner. Once a proper 

design is done, it has to be tested for all its functional aspects. The system has to carry out all 

the expected activities and not falter. Further, it should not malfunction under any set of input 

conditions. Functional testing is carried out to check for such requirements. Test inputs can be 

purely combinational, periodic, numeric sequences, random inputs, conditional inputs, or 

combinations of these. With such requirements, definition and design of test benches is often 

as challenging as the design itself. As the circuit design proceeds, one develops smaller blocks 

and groups them together to form bigger circuit units. The process is repeated until the whole 

system is fully built up. Every stage calls for tests to see whether the subsystem at that layer 

behaves in the manner expected. Such testing calls for two types of observations: 

 Study of signals within a small unit when test inputs are given to the whole unit.  

 Isolation of a small element and doing local test to facilitate debugging.  

Verilog has constructs to accommodate both types of observation through a hierarchical 

description of variables within. 

Constructs for Modeling Timing Delays 

Any basic gate has propagation delays and transmission delays associated with it. As the 

elements in the circuit increase in number, the type and variety of such delays increase rapidly; 

often one reaches a stage where the expected function is not realized thanks to an unduly large 



time delay. Thus there is a need to test every digital design for its performance with respect to 

time. Verilog has constructs for modeling the following delays: 

 Gate delay  

 Net delay  

 Path delay  

 Pin-to-pin delay 

In addition, a design can be tested for setup time, hold time, clock-width time specifications, 

etc. Such constructs or delay models are akin to the finite delay time, rise time, fall time, path 

or propagation delays, etc., associated with real digital circuits or systems. The use of such 

constructs in the design helps simulate realistic conditions in a digital circuit. Further, one can 

change the values of delays in different ways. If a buffer capacity is increased, its associated 

delays can be reduced. If a design is to migrate to a better technology, the delay values can be 

rescaled. With such testing, one can estimate the minimum frequency of operation, the 

maximum speed of response, or typical response times. 

Programming Language Interface (PLI) 

PLI provides an active interface to a compiled Verilog module. The interface adds a new 

dimension to working with Verilog routines from a C platform. The key functions of the 

interface are as follows:  

 One can read data from a file and pass it to a Verilog module as input. Such data can be 

test vectors or other input data to the module. Similarly, variables in Verilog modules 

can be accessed and their values written to output devices.  

 Delay values, logic values, etc., within a module can be accessed and altered.  

 Blocks written in C language can be linked to Verilog modules. 



LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG 

Introduction 

The constructs and conventions make up a software language. A clear understanding and 
familiarity of these is essential for the mastery of the language. Verilog has its own constructs 
and conventions [IEEE, Sutherland]. In many respects they resemble those of C language 
[Gottfried]. 

Any source file in Verilog (as with any file in any other programming language) is made up of a 

number of ASCII characters. The characters are grouped into sets — referred to as “lexical 

tokens.” A lexical token in Verilog can be a single character or a group of characters. Verilog has 

7 types of lexical tokens- operators, keywords, identifiers, white spaces, comments, numbers, 

and strings. 

Case Sensitivity 

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all 

related as different entities / quantities in Verilog. 

Keywords 

The keywords define the language constructs. A keyword signifies an activity to be carried out, 

initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other 

than that it is intended for. All keywords in Verilog are in small letters and require to be used as 

such (since Verilog is a case-sensitive language). All keywords appear in the text in New Courier 

Bold-type letters. 

Examples 
 
module -- signifies the beginning of a module definition. 
endmodule -- signifies the end of a module definition. 
begin --  signifies the beginning of a block of statements. 
end --   signifies the end of a block of statements.  
if --   signifies a conditional activity to be checked  
while --   signifies a conditional activity to be carried out. 
 
Identifiers 
 
Any program requires blocks of statements, signals, etc., to be identified with an attached 
nametag. Such nametags are identifiers. It is good practice for us to use identifiers, closely 
related to the significance of variable, signal, block, etc., concerned. This eases understanding 
and debugging of any program. 
e.g., clock, enable, gate_1, . . . 



There are some restrictions in assigning identifier names. All characters of the alphabet or an 
underscore can be used as the first character. Subsequent characters can be of alphanumeric 
type, or the underscore (_), or the dollar ($) sign – for example 
 
name, _name. Name, name1, name_$, . . . --  all these are allowed as identifiers 
 
name aa -- not allowed as an identifier because of the blank ( “name” and “aa” are interpreted 
as two different identifiers) 
 
$name -- not allowed as an identifier because of the presence of “$” as the first character. 
1_name -- not allowed as an identifier, since the numeral “1” is the first character 
 
@name -- not allowed as an identifier because of the presence of the character “@”. 
A+b m not allowed as an identifier because of the presence of the character “+”. 
 
White Space Characters 
 
Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters in Verilog. In 

any design description the white space characters are included to improve readability. 

Functionally, they separate legal tokens. They are introduced between keywords, keyword and 

an identifier, between two identifiers, between identifiers and operator symbols, and so on. 

White space characters have significance only when they appear inside strings. 

Comments 

Comments can be inserted in the code for readability and documentation. There are two ways 
to write comments. A one-line comment starts with "//". Verilog skips from that point to the 
end of line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line 
comments cannot be nested. However, one-line comments can be embedded in multiple-line 
comments. 
 
a = b && c; // This is a one-line comment 
 
/* This is a multiple line 
 
comment */ 
 
/* This is /* an illegal */ comment */ 
 
/* This is //a legal comment */ 
 
 
 



Operators 
 
Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. 
Binary operators appear between two operands. Ternary operators have two separate 
operators that separate three operands. 
 
a = ~ b; // ~ is a unary operator. b is the operand 
 
a = b && c; // && is a binary operator. b and c are operands 
 
a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 
 
Number Specification 
 
There are two types of number specification in Verilog: sized and unsized. 
Sized numbers 
Sized numbers are represented as <size> '<base format> <number>. 
 
<size> is written only in decimal and specifies the number of bits in the number. Legal base 
formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The 
number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a 
subset of these digits is legal for a particular base. Uppercase letters are legal for number 
specification. 
 
4'b1111 // This is a 4-bit binary number 
12'habc // This is a 12-bit hexadecimal number 
16'd255 // This is a 16-bit decimal number. 
 
Unsized numbers 
 
Numbers that are specified without a <base format> specification are decimal numbers by 
default. Numbers that are written without a <size> specification have a default number of bits 
that is simulator- and machine-specific (must be at least 32). 
  
23456 // This is a 32-bit 'hc3 // This is a 32-bit 'o21 // This is a 32-bit 
  
decimal number by default hexadecimal number octal number 
  
X or Z values 
 
Verilog has two symbols for unknown and high impedance values. These values are very 
important for modeling real circuits. An unknown value is denoted by an x. A high impedance 
value is denoted by z. 
 



12'h13x // This is a 12-bit hex number; 4 least significant bits unknown 
 
6'hx // This is a 6-bit hex number 
 
32'bz // This is a 32-bit high impedance number 
 
An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the 
octal base, and one bit for a number in the binary base. If the most significant bit of a number is 
0, x, or z, the number is automatically extended to fill the most significant bits, respectively, 
with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 
1, then it is also zero extended. 
 
Negative numbers 
 
Negative numbers can be specified by putting a minus sign before the size for a constant 
number. Size constants are always positive. It is illegal to have a minus sign between <base 
format> and <number>. An optional signed specifier can be added for signed arithmetic. 
 
-6'd3 // 8-bit negative number stored as 2's complement of 3 -6'sd3 // Used for performing 
signed integer math 4'd-2 // Illegal specification 
 
Underscore characters and question marks 
 
An underscore character "_" is allowed anywhere in a number except the first character. 
Underscore characters are allowed only to improve readability of numbers and are ignored by 
Verilog. 
A question mark "?" is the Verilog HDL alternative for z in the context of numbers. 

12'b1111_0000_1010 // Use of underline characters for readability  

4'b10?? // Equivalent of a 4'b10zz 

Strings 
 
A string is a sequence of characters that are enclosed by double quotes. The restriction on a 
string is that it must be contained on a single line, that is, without a carriage return. It cannot be 
on multiple lines. Strings are treated as a sequence of one-byte ASCII values. 
 
"Hello Verilog World" // is a string 
 
"a / b" // is a string 
 
 
 
 



Value Set or Logic Values 
 
Verilog supports four values and eight strengths to model the functionality of real hardware. 
The four value levels are listed in Table below. 
 

Value Level Condition in Hardware Circuits 

0 Logic zero, false condition 

1 Logic one, true condition 

x Unknown logic value 

Z High impedance, floating state 

  
Strengths 
 
The logic levels are also associated with strengths. In many digital circuits, multiple assignments 
are often combined to reduce silicon area or to reduce pin-outs. To facilitate this, one can 
assign strengths to logic levels. Verilog has eight strength levels – four of these are of the 
driving type, three are of capacitive type and one of the hi-Z type. 
 
In addition to logic values, strength levels are often used to resolve conflicts between drivers of 
different strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in 
Table below 
 

Strength Level Type Degree 
   

supply Driving strongest 
   

strong Driving  
   

pull riving  
   

large Storage  
   

weak Driving  
   

medium Storage  
   

small Storage  
   

highz High Impedance weakest 
   

   

   

If two signals of unequal strengths are driven on a wire, the stronger signal prevails.  
For example, if two signals of strength strong1 and weak0 contend, the result is resolved as a 
strong1. If two signals of equal strengths are driven on a wire, the result is unknown. If two 
signals of strength strong1 and strong0 conflict, the result is an x. Strength levels are 
particularly useful for accurate modeling of signal contention, MOS devices, dynamic MOS, and 
other low-level devices. 
 



Data Types 
 
The data handled in Verilog fall into two categories: 
(i) Net data type 
(ii) Variable data type 
 
The two types differ in the way they are used as well as with regard to their respective 
hardware structures. Data type of each variable or signal has to be declared prior to its use. The 
same is valid within the concerned block or module. 
 
Nets 
A net signifies a connection from one circuit unit to another. Such a net carries the value of the 
signal it is connected to and transmits to the circuit blocks connected to it. If the driving end of 
a net is left floating, the net goes to the high impedance state. A net can be specified in 
different ways. 
wire: It represents a simple wire doing an interconnection. Only one output is connected to a 
wire and is driven by that. 
 
tri: It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by more 
than one signal outputs. 
Nets are one-bit values by default unless they are declared explicitly as vectors. The terms wire 
and net are often used interchangeably. 
 
Variable Data Type 
 
A variable is an abstraction for a storage device. It can be declared through the keyword reg 
and stores the value of a logic level: 0, 1, x, or z. A net or wire connected to a reg takes on the 
value stored in the reg and can be used as input to other circuit elements. But the output of a 
circuit cannot be connected to a reg. The value stored in a reg is changed through a fresh 
assignment in the program. 
time, integer, real, and realtime are the other variable types of data; these are dealt with later. 

Time 
Verilog simulation is done with respect to simulation time. A special time register data type is 
used in Verilog to store simulation time. A time variable is declared with the keyword time. The 
width for time register data types is implementation-specific but is at least 64 bits. The system 
function $time is invoked to get the current simulation time. 
 
time save_sim_time; // Define a time variable save_sim_time initial 
 
save_sim_time = $time; // Save the current simulation time 
 
 
 



Scalars and Vectors 
 
Entities representing single bits — whether the bit is stored, changed, or transferred — are 
called “scalars.” Often multiple lines carry signals in a cluster – like data bus, address bus, and 
so on. Similarly, a group of regs stores a value, which may be assigned, changed, and handled 
together. The collection here is treated as a “vector.”  
Figure below illustrates the difference between a scalar and a vector. wr and rd are two scalar 
nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting 
the same two blocks. b[0], b[1], b[2], and b[3] are the individual bits of vector b. They are “part 
vectors.” 
 
A vector reg or net is declared at the outset in a Verilog program and hence treated as such. 
The range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a 
colon in between the two. The combination is enclosed within square brackets. 

 

Examples: 

wire[3:0] a; /* a is a four bit vector of net type; the bits are designated as a[3], a[2], a[1] and 
a[0]. */ 

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as b[2], b[1] and 
b[0]. */ 

reg[4:2] c; /* c is a three bit vector of reg type; the bits are designated as c[4], c[3] and c[2]. 
*/ 

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2], d[-1], d[0], d[1] and 
d[2]. */ 

 



Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit 
quantity. In the range specification of a vector the most significant bit and the least significant 
bit can be assigned specific integer values. These can also be expressions evaluating to integer 
constants – positive or negative. 

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be 
specifically declared as “signed” if so desired. 
 
Examples 
 
wire signed[4:0] num; // num is a vector in the range -16 to +15. 
 
reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7. 
 

 

 

 
 
 
 



Unit-2 

Gate Level Modeling 

Introduction 

Digital designers are normally familiar with all the common logic gates, their symbols, and their 

working. Flip-flops are built from the logic gates. All other functionally complex and more 

involved circuits can also be built using the basic gates. All the basic gates are available as 

“Primitives” in Verilog. Primitives are generalized modules that already exist in Verilog [IEEE]. 

They can be instantiated directly in other modules. 

And Gate Primitive 

The AND gate primitive in Verilog is instantiated with the following statement: 

and g1 (O, I1, I2, . . ., In); 

Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to the specific 

instantiation. O is the gate output; I1, I2, etc., are the gate inputs. The following are 

noteworthy: 

 The AND module has only one output. The first port in the argument list is the output 

port. 

 An AND gate instantiation can take any number of inputs — the upper limit is compiler-

specific. 

 A name need not be necessarily assigned to the AND gate instantiation; this is true of all 

the gate primitives available in Verilog. 

Truth Table of AND Gate Primitive 

The truth table for a two-input AND gate is shown in Table below It can be directly extended to 

AND gate instantiations with multiple inputs. The following observations are in order here: 

Truth table of AND gate primitive 

    

  Input 1 

  0 1 x z 

 
Input 2 

0 0 0 0 0 

1 0 1 x x 

x 0 x x x 

z 0 x x x 



 If any one of the inputs to the AND gate instantiation is in the 0 state, its output is also 
in the 0 state. It is irrespective of whether the other inputs are at the 0, 1, x or z state. 

 

 The output is at 1 state if and only if every one of the inputs is at 1 state. 
 

 For all other cases the output is at the x state. 
 

 Note that the output is never at the z state – the high impedance state. This is true of all 
other gate primitives as well. 

 

Module Structure 

In a general case a module can be more elaborate. A lot of flexibility is available in the 
definition of the body of the module. However, a few rules need to be followed: 
 

 The first statement of a module starts with the keyword module; it may be followed by 
the name of the module and the port list if any. 

 

 All the variables in the ports-list are to be identified as inputs, outputs, or inouts. The 
corresponding declarations have the form shown below: 

 
ƒ  Input a1, a2; 
ƒ  Output b1, b2; 
ƒ  Inout c1, c2; 
 
The port-type declarations here follow the module declaration mentioned above. 
 

 The ports and the other variables used within the body of the module are to be 
identified as nets or registers with specific types in each case. The respective declaration 
statements follow the port-type declaration statements. 

 
Examples: 
 
wire a1, a2, c; 
reg b1, b2; 
 
The type declaration must necessarily precede the first use of any variable or signal in the 
module. 

 The executable body of the module follows the declaration indicated above. 
 

 The last statement in any module definition is the keyword “endmodule”. 
 

 Comments can appear anywhere in the module definition. 



 

Other Gate Primitives 
 
All other basic gates are also available as primitives in Verilog. Details of the facilities and 
instantiations in each case are given in Table below. The following points are noteworthy here: 
 

 In all cases of instantiations, one need not necessarily assign a name to the 
instantiation. It need be done only when felt necessary – say for clarity of circuit 
description. 

 

 In all the cases the output port(s) is (are) declared first and the input port(s) is (are) 
declared subsequently. 

 

 The buffer and the inverter have only one input each. They can have any number of 
outputs; the upper limit is compiler-specific. All other gates have one output each but 
can have any number of inputs; the upper limit is again compiler-specific. 

 
Table for Basic gate primitives in Verilog with details 

Gate Mode of instantiation Output port(s) Input port(s) 

AND and ga ( o, i1, i2, . . . i8); o i1, i2, . . 

OR or gr ( o, i1, i2, . . . i8); o i1, i2, . . 

NAND nand gna ( o, i1, i2, . . . i8); o i1, i2, . . 

NOR nor gnr ( o, i1, i2, . . . i8); o i1, i2, . . 

XOR xor gxr ( o, i1, i2, . . . i8); o i1, i2, . . 

XNOR xnor gxn ( o, i1, i2, . . . i8); o i1, i2, . . 

BUF buf gb ( o1, o2, …. i); o1, o2, o3, . . i 

NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i 

 
 
 
 
 
 
 
 
 
 
 



Example for a typical A-O-I gate circuit 

The commonly used A-O-I gate is shown in Figure 1 for a simple case. The module and the test 

bench for the same are given in Figure 2. The circuit has been realized here by instantiating the 

AND and NOR gate primitives. The names of signals and gates used in the instantiations in the 

module of Figure 2 remain the same as those in the circuit of Figure 1. The module aoi_gate in 

the figure has input and output ports since it describes a circuit with signal inputs and an 

output. The module aoi_st is a stimulus module. It generates inputs to the aoi_gate module and 

gets its output. It has no input or output ports. 

 

/*module for the aoi-gate of figure 1 instantiating the gate primitives – fig 2*/  

module aoi_gate(o,a1,a2,b1,b2); 

input a1,a2,b1,b2;      // a1,a2,b1,b2 form the input //ports of the module 

output o;                   //o is the single output port of the module  

wire o1,o2;               //o1 and o2 are intermediate signals //within the module 

and g1(o1,a1,a2);   //The AND gate primitive has two and g2(o2,b1,b2); 

        // instantiations with assigned //names g1 & g2. 

nor g3(o,o1,o2);     //The nor gate has one instantiation with assigned name g3. 

endmodule 

//Test-bench for the aoi_gate above 

module aoi_st; 

reg a1,a2,b1,b2; 

 

//specific values will be assigned to a1,a2,b1, // and b2 and these connected 

//to input ports of the gate insatntiations; 



//hence these variables are declared as reg 

wire o; 

initial 

begin 

a1 = 0; 

a2 = 0; 

b1 = 0; 

b2 = 0; 

#3 a1 = 1; 

#3 a2 = 1; 

#3 b1 = 1; 

#3 b2 = 0; 

#3 a1 = 1; 

#3 a2 = 0; 

#3 b1 = 0; 

end 

initial #100 $stop;//the simulation ends after //running for 100 tu's. 

initial $monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2); 

aoi_gate gg(o,a1,a2,b1,b2); 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 



Tri-State Gates 

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can be turned 
ON or OFF by a control signal. The direct buffer is instantiated as 
Bufif1 nn (out, in, control); 
 
The symbol of the buffer is shown in Figure 
1. We have 

 out as the single output variable 

 in as the single input variable and 

 control as the single control signal 
variable. 

 
When 
control = 1, 
out = in. 

 

When 
control = 0, 
out=tri-stated 

 
out is cut off from the input and tri-stated. The output, input and control signals should appear 
in the instantiation in the same order as above. Details of bufif1 as well as the other tri-state 
type primitives are shown in Table 1. 
 In all the cases shown in Table 1, out is the output; in is the input, and control, the control 
variable. 

 



Array of Instances of Primitives 

The primitives available in Verilog can also be instantiated as arrays. A judicious use of such 
array instantiations often leads to compact design descriptions. A typical array instantiation has 
the form 
 
and gate [7 : 4 ] (a, b, c); 
 
where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to combining the 
following 4 instantiations: 
 
and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], c[1]), gate [4] (a[0], 
b[0], c[0]); 
 
The assignment of different bits of input vectors to respective gates is implicit in the basic 
declaration itself. A more general instantiation of array type has the form 
 
and gate[mm : nn](a, b, c); 
 
where mm and nn can be expressions involving previously defined parameters, integers and 
algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have restrictions of 
sign; either can be larger than the other. 
 

Gate Delays 

Until now, we described circuits without any delays (i.e., zero delay). In real circuits, logic gates 

have delays associated with them. Gate delays allow the Verilog user to specify delays through 

the logic circuits. Pin-to-pin delays can also be specified in Verilog. 

Rise, Fall, and Turn-off Delays 

There are three types of delays from the inputs to the output of a primitive gate. 

Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

 

 

 

 

 



Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value. 

 

 

 

 

 

 

Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance 

value (z) from another value. 

If the value changes to x, the minimum of the three delays is considered. 

Three types of delay specifications are allowed. If only one delay is specified, this value 

is used for all transitions. If two delays are specified, they refer to the rise and fall delay 

values. The turn-off delay is the minimum of the two delays. If all three delays are 

specified, they refer to rise, fall, and turn-off delay values. If no delays are specified, the 

default value is zero. Examples of delay specification are shown in below 

Example--Types of Delay Specification 
 
 //Delay of delay_time for all transitions  
and #(delay_time) a1(out, i1, i2); 
 
 // Rise and Fall Delay Specification. 
 
and #(rise_val, fall_val) a2(out, i1, i2); 
 
// Rise, Fall, and Turn-off Delay Specification 
 
bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 
 
 
Examples of delay specification are shown below. 
 
and #(5) a1(out, i1, i2); //Delay of 5 for all transitions and #(4,6) a2(out, i1, i2); // Rise = 
4, Fall = 6 
 
bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off = 5 



Unit-3 
Behavioral Modeling 

Introduction 
 
Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling techniques 
are relatively detailed. They require some knowledge of how hardware or hardware signals work. The 
abstraction in this modeling is as simple as writing the logic in C language. This is a very powerful 
abstraction technique. All that designer needs is the algorithm of the design, which is the basic 
information for any design. 
Most of the behavioral modeling is done using two important constructs: initial and always. All the other 
behavioral statements appear only inside these two structured procedure constructs. 
 
The Initial Construct 
 
The statements which come under the initial construct constitute the initial block. The initial block is 
executed only once in the simulation, at time 0. If there is more than one initial block, then all the initial 
blocks are executed concurrently. The initial construct is used as follows: 
initial 
begin 
reset=1'b0; 
clk=1'b1; 
end 
or 
initial 
clk = 1'b1; 
 
In the first initial block there are more than one statements hence they are written between begin and 
end. If there is only one statement then there is no need to put begin and end. 
 
The always construct      
 
The statements which come under the always construct constitute the always block. The always block 
starts at time 0, and keeps on executing all the simulation time. It works like a infinite loop. It is generally 
used to model a functionality that is continuously repeated. 
 
always 
#5clk=~clk; 
initial 
clk = 1'b0; 
 
The above code generates a clock signal clk, with a time period of 10 units. The initial blocks initiates the 
clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we get a time period of 10 units. 
This is the way in general used to generate a clock signal for use in test benches. 
 
always@(posedge clk, negedge reset) 
begin 
a = b + c; 



    d = 1'b1; 
end 
 
In the above example, the always block will be executed whenever there is a positive edge in the clk 
signal, or there is negative edge in the reset signal. This type of always is generally used in implement a 
FSM, which has a reset signal. 
 
 
always @(b,c,d) 
begin 
    a = ( b + c )*d; 
    e = b | c; 
end 
 
In the above example, whenever there is a change in b, c, or d the always block will be executed. Here the 
list b, c, and d is called the sensitivity list. 
 
In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include all input 
signals, used in the always block. This is very useful when always blocks is used for implementing the 
combination logic. 
 
Procedural Assignments 
 
Procedural assignments are used for updating reg, integer, time, real, realtime, and memory data types. 
The variables will retain their values until updated by another procedural assignment. There is a significant 
difference between procedural assignments and continuous assignments. 
Continuous assignments drive nets and are evaluated and updated whenever an input operand changes 
value. Where as procedural assignments update the value of variables under the control of the procedural 
flow constructs that surround them. 
 
The LHS of a procedural assignment could be: 
 

• reg, integer, real, realtime, or time data type. 

• Bit-select of a reg, integer, or time data type, rest of the bits are untouched. 

• Part-select of a reg, integer, or time data type, rest of the bits are untouched. 

• Memory word. 
Concatenation of any of the previous four forms can be specified. 
When the RHS evaluates to fewer bits than the LHS, then if the right-hand side is signed, it will be sign-
extended to the size of the left-hand side. 
 
There are two types of procedural assignments: blocking and non-blocking assignments. 
 
Blocking assignments: A blocking assignment statements are executed in the order they are specified in a 
sequential block. The execution of next statement begins only after the completion of the present 
blocking assignments. A blocking assignment will not block the execution of the next statement in a 
parallel block. The blocking assignments are made using the operator =. 
 



 
initial 
begin 
    a = 1; 
    b = #5 2; 
    c = #2 3; 
end 
 
In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned 
value 3 at time 7. 
 
Non-blocking assignments: The nonblocking assignment allows assignment scheduling without blocking 
the procedural flow. The nonblocking assignment statement can be used whenever several variable 
assignments within the same time step can be made without regard to order or dependence upon each 
other. Non-blocking assignments are made using the operator <=. 
Note: <= is same for less than or equal to operator, so whenever it appears in a expression it is considered 
to be comparison operator and not as non-blocking assignment. 
 
 
initial 
begin 
    a <= 1; 
    b <= #5 2; 
    c <= #2 3; 
end 
 
In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned 
value 3 at time 2 (because all the statements execution starts at time 0, as they are non-blocking 
assignments. 
 
Block Statements 
 
Block statements are used to group two or more statements together, so that they act as one statement. 
There are two types of blocks: 
 

• Sequential block. 

• Parallel block. 
Sequential block: The sequential block is defined using the keywords begin and end. The procedural 
statements in sequential block will be executed sequentially in the given order. In sequential block delay 
values for each statement shall be treated relative to the simulation time of the execution of the previous 
statement. The control will pass out of the block after the execution of last statement. 
 
Parallel block: The parallel block is defined using the keywords fork and join. The procedural statements in 
parallel block will be executed concurrently. In parallel block delay values for each statement are 
considered to be relative to the simulation time of entering the block. The delay control can be used to 
provide time-ordering for procedural assignments. The control shall pass out of the block after the 
execution of the last time-ordered statement. 
 



Note that blocks can be nested. The sequential and parallel blocks can be mixed. 
 
Block names: All the blocks can be named, by adding : block_name after the keyword begin or fork. The 
advantages of naming a block are: 
 
It allows to declare local variables, which can be accessed by using hierarchical name referencing. 
They can be disabled using the disable statement (disable block_name;). 
 
Conditional (if-else) Statement 
 
The condition (if-else) statement is used to make a decision whether a statement is executed or not. The 
keywords if and else are used to make conditional statement. The conditional statement can appear in the 
following forms. 
 
 
if ( condition_1 ) 
    statement_1; 
 
if ( condition_2 ) 
    statement_2; 
else 
    statement_3; 
 
if ( condition_3 ) 
    statement_4; 
else if ( condition_4 ) 
    statement_5; 
else 
    statement_6; 
 
if ( condition_5 ) 
begin 
    statement_7; 
    statement_8; 
end 
else 
begin 
    statement_9; 
    statement_10; 
end 
 
Conditional (if-else) statement usage is similar to that if-else statement of C programming language, 
except that parenthesis are replaced by begin and end. 
 
Case Statement 
 
The case statement is a multi-way decision statement that tests whether an expression matches one of 
the expressions and branches accordingly. Keywords case and endcase are used to make a case statement. 



The case statement syntax is as follows. 
 
 
case (expression) 
    case_item_1: statement_1; 
    case_item_2: statement_2; 
    case_item_3: statement_3; 
    ... 
    ... 
    default: default_statement; 
endcase 
 
If there are multiple statements under a single match, then they are grouped using begin, and end 
keywords. The default item is optional. 
 
Case statement with don't cares: casez and casex 
 
casez treats high-impedance values (z) as don't cares. casex treats both high-impedance (z) and unknown 
(x) values as don't cares. Don't-care values (z values for casez, z and x values for casex) in any bit of either 
the case expression or the case items shall be treated as don't-care conditions during the comparison, and 
that bit position shall not be considered. The don't cares are represented using the ? mark. 
 
Loop Statements 
 
There are four types of looping statements in Verilog: 
 
forever 
repeat 
while 
for 
 
Forever Loop 
 
Forever loop is defined using the keyword forever, which Continuously executes a statement. It 
terminates when the system task $finish is called. A forever loop can also be ended by using the disable 
statement. 
 
 
initial 
begin 
    clk = 1'b0; 
    forever #5 clk = ~clk; 
end 
 
In the above example, a clock signal with time period 10 units of time is obtained. 
 
 

http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#forever
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#repeat
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#while
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#for


 
Repeat Loop 
 
Repeat loop is defined using the keyword repeat. The repeat loop block continuously executes the block 
for a given number of times. The number of times the loop executes can be mention using a constant or 
an expression. The expression is calculated only once, before the start of loop and not during the 
execution of the loop. If the expression value turns out to be z or x, then it is treated as zero, and hence 
loop block is not executed at all. 
 
initial 
begin 
    a = 10; 
    b = 5; 
    b <= #10 10; 
    i = 0; 
    repeat(a*b) 
    begin 
        $display("repeat in progress"); 
        #1 i = i + 1; 
    end 
end 
 
In the above example the loop block is executed only 50 times, and not 100 times. It calculates (a*b) at the 
beginning, and uses that value only. 
 
While Loop 
 
The while loop is defined using the keyword while. The while loop contains an expression. The loop 
continues until the expression is true. It terminates when the expression is false. If the calculated value of 
expression is z or x, it is treated as a false. The value of expression is calculated each time before starting 
the loop. All the statements (if more than one) are mentioned in blocks which begins and ends with 
keyword begin and end keywords. 
 
initial 
begin 
    a = 20; 
    i = 0; 
    while (i < a) 
    begin 
    $display("%d",i); 
    i = i + 1; 
    a = a - 1; 
    end 
end 
 
In the above example the loop executes for 10 times. (Observe that a is decrementing by one and i is 
incrementing by one, so loop terminated when both i and a become 10). 
 



For Loop 
 
The For loop is defined using the keyword for. The execution of for loop block is controlled by a three step 
process, as follows: 
 
Executes an assignment, normally used to initialize a variable that controls the number of times the for 
block is executed. 
Evaluates an expression, if the result is false or z or x, the for-loop shall terminate, and if it is true, the for-
loop shall execute its block. 
Executes an assignment normally used to modify the value of the loop-control variable and then repeats 
with second step. 
Note that the first step is executed only once. 
 
initial 
begin 
    a = 20; 
    for (i = 0; i < a; i = i + 1, a = a - 1) 
    $display("%d",i); 
end 
 
The above example produces the same result as the example used to illustrate the functionality of the 
while loop. 
 
Examples: 
 
1. Implementation of a 4x1 multiplexer. 
 
 
module  mux4_1 (out, in0, in1, in2, in3, s0, s1); 
 
output out; 
 
// out is declared as reg, as default is wire 
 
reg out; 
 
// out is declared as reg, because we will 
// do a procedural assignment to it. 
 
input in0, in1, in2, in3, s0, s1; 
 
// always @(*) is equivalent to 
// always @( in0, in1, in2, in3, s0, s1 ) 
 
always @(*) 
begin 
  case ({s1,s0}) 
      2'b00: out = in0; 



      2'b01: out = in1; 
      2'b10: out = in2; 
      2'b11: out = in3; 
      default: out = 1'bx; 
  endcase 
end 
endmodule 
 
2. Implementation of a full adder. 
 
module full_adder (sum, c_out, in0, in1, c_in); 
 
output sum, c_out; 
reg sum, c_out 
 
input in0, in1, c_in; 
 
always @(*) 
  {c_out, sum} = in0 + in1 + c_in; 
 
endmodule 
 
3. Implementation of a 8-bit binary counter. 
 
module ( count, reset, clk ); 
 
output [7:0] count; 
reg [7:0] count; 
 
input reset, clk; 
 
// consider reset as active low signal 
 
always @( posedge clk, negedge reset) 
begin 
  if(reset == 1'b0) 
      count <= 8'h00; 
  else 
      count <= count + 8'h01; 
end 
 
endmodule 
 
Implementation of a 8-bit counter is a very good example, which explains the advantage of behavioral 
modeling. Just imagine how difficult it will be implementing a 8-bit counter using gate-level modeling. 
In the above example the incrementation occurs on every positive edge of the clock. When count 
becomes 8'hFF, the next increment will make it 8'h00, hence there is no need of any modulus operator. 
Reset signal is active low.  


